Regulatory subunit of type II cAMP-dependent protein kinase as substrate and inhibitor of protein phosphatase-1 and -2A

György Vereb, Ferenc Erdődi, Béla Tóth and György Bot

Institute of Medical Chemistry, University School of Medicine, Debrecen, Bem tér 18/B, H-4026, Hungary

Received 17 December 1985

The dissociated regulatory subunit (R^{II}) of autophosphorylated cAMP-dependent protein kinase II was dephosphorylated by the catalytic subunits of protein phosphatase-1 and -2A (phosphatase-1_c and -2A_c) and by a high- M_r polycation-dependent form of phosphatase-2A (2A_o) with K_m values of 5, 0.3 and 1 μ M, respectively. Dissociation of protein kinase by cAMP preferentially increased the dephosphorylation of R^{II} by phosphatase-1_c, whereas polycations (histone HI or polybrene) markedly stimulated phosphatase-2A_c and -2A_o even in the absence of cAMP. Thiophosphorylated R^{II} inhibited the dephosphorylation of phosphorylase a by these phosphatases with half-maximum inhibitory concentrations of 0.1–0.36 μ M.

cyclic AMP dependence

Protein kinase

Phosphorylase a

Protein phosphatase

Polybrene

1. INTRODUCTION

Autophosphorylation of the cAMP-dependent protein kinase II and its physiological role have been intensively studied [1,2]. There are also data about its dephosphorylation [3-6], however, the role and regulation of some protein phosphatases in this process are not clear yet. Many proteins phosphorylated through cAMP-mediated processes can be dephosphorylated by two types of protein phosphatases designated phosphatase-1 and phosphatase-2A [7]. Phosphatase-1 is inhibited by heat-stable inhibitors [8] or heparin [9], whereas phosphatase-2A is insensitive to these inhibitors.

Here we studied the dephosphorylation of the regulatory subunit (R^{II}) of cAMP-dependent protein kinase by the catalytic subunits of protein phosphatase-1 and -2A (phosphatase-1_c and phosphatase-2A_c) and by a high- M_r polycation-

Part of this work was presented at the 50th Jubilee Congress of the Hungarian Physiological Society, Budapest, 1985

activated form of phosphatase-2A (phosphatase-2A_o) [10]. The effect of cAMP, polycations and Mn²⁺ on the dephosphorylation reaction is also presented. In addition, thiophosphorylated R^{II} was found to be a potent inhibitor of all phosphatases investigated, using phosphorylase *a* as substrate, suggesting that autophosphorylation of protein kinase II is an important factor in the regulation of various phosphatases.

2. MATERIALS AND METHODS

2.1. Materials

Histone H1 and cAMP were purchased from Sigma, heparin-Sepharose CL-6B from Pharmacia, adenosine-5'-O-(3-thiotriphosphate) (ATP- γ -S) and polybrene from Serva, cAMP-Sepharose from PL-Biochemicals and [8-³H]cAMP from Amersham. [γ -³²P]ATP was prepared as in [11]. All chemicals used were of reagent grade.

2.2. Preparation of enzymes

The catalytic subunit (C) [12] and R^{II} subunit of cAMP-dependent protein kinase II were prepared

from bovine heart [13], with the following modifications: elution of RII from cAMP-Sepharose was performed with 7 M urea [14] and the holoenzyme was dephosphorylated with 10 μg/ml protein phosphatase-2A_c in the presence of 1 mM MnCl₂, $50 \,\mu \text{g/ml}$ polybrene and 20 mM benzamidine before chromatography on cAMP-Sepharose. The protein kinase II holoenzyme was reconstituted in the dephospho form and autophosphorylated with either $[\gamma^{-32}P]ATP$ [2], resulting in a specific activity of 2000-3000 cpm/pmol R^{II}, or ATP- γ -S. Rabbit skeletal muscle phosphorylase a was purified as in [15]. Protein phosphatase-1c and -2Ac were isolated from rabbit skeletal muscle [9]. Protein phosphatase-2A₀ from rabbit liver [10] was further purified to apparent homogeneity, as will be published elsewhere.

2.3. Dephosphorylation reactions

The autophosphorylated protein kinase II holoenzyme $(0.1-5 \mu M)$ or phosphorylase a (120-240 µg/ml) was incubated with various phosphatases at 30°C (5-20 min) in 50 µl reaction mixture containing 50 mM Tris-HCl (pH 7.0), 5 mM dithiothreitol and 2 mg/ml bovine serum albumin. Additives (histone H1, polybrene, cAMP or MnCl₂) were preincubated with protein kinase for 5 min. Phosphorylase a was dephosphorylated in the presence of 2 mM caffeine. Reactions were started by the addition of phosphatase, diluted so that no more than 30-40% of the substrate was converted. 32P release was determined from the supernatant after precipitation of proteins by 20% trichloroacetic acid. Dephosphorylation of phosphorylase a was followed by phosphorylase a activity measurements as in [16].

3. RESULTS

3.1. Effect of cAMP, polycations and Mn²⁺ on the dephosphorylation of protein kinase II

Table 1 shows the relative rates of dephosphorylation of ³²P-protein kinase II by phosphatase-1_c and -2A_c in the presence of various effectors. Under the conditions used the holoenzyme proved to be a poor substrate of phosphatases. Addition of cAMP greatly enhanced the activity of phosphatase-1_c but caused only a 2-fold increase in the activity of phosphatase-2A_c. In the presence of polybrene (a synthetic polycation) or histone H1

Table 1

Effects of cAMP, polycations and Mn²⁺ on the dephosphorylation of protein kinase II (holoenzyme)

Effector	Activity (%)	
	Phosphatase-1c	Phosphatase-2A
None	8	11
cAMP	86	22
Histone Hl	24	42
Polybrene	26	46
cAMP +		
polybrene	100	100
cAMP +		
Mn ²⁺	75	237
cAMP +		
Mn^{2+} +		
polybrene	100	380

Concentration of 32 P-protein kinase was 1 μ M, cAMP 2.5 \times 10^{-5°} M, histone Hl 100 μ g/ml, polybrene 50 μ g/ml and Mn²⁺ 1 mM. Details of dephosphorylation are described in section 2. Phosphatase activities measured in the presence of cAMP + polybrene were taken as 100%. The means of 3 experiments are shown

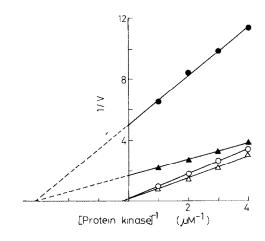


Fig.1. Effect of substrate concentration on the activity of phosphatase- 1_c and $-2A_c$ in the presence or absence of polybrene. ^{32}P -protein kinase II was dissociated by 2.5×10^{-5} M cAMP. The dephosphorylation was catalyzed by phosphatase- 1_c (open symbols) or $2A_c$ (closed symbols) in the absence (\bigcirc, \bullet) and presence of $50 \, \mu\text{g/ml}$ polybrene $(\triangle, \blacktriangle)$ as described in section 2. Initial velocities of ^{32}P release were expressed in arbitrary units.

both phosphatase-1_c and -2A_c became partially active towards the holoenzyme. However, the activation of phosphatase-2A_c by polybrene was more pronounced, especially in the presence of cAMP. Mn²⁺ had a further activating effect on phosphatase-2A_c, which was potentiated by polybrene.

Analysing the effect of substrate concentration on the phosphatase activities (fig.1) different $K_{\rm m}$ values were obtained in the presence of cAMP for phosphatase- $1_{\rm c}$ and $-2A_{\rm c}$ (5 and $0.3~\mu{\rm M}$, respectively). Also, as seen in fig.1, the stimulation of phosphatase- $2A_{\rm c}$ by polybrene is due to an increase in $V_{\rm max}$.

According to fig.2, phosphatase- $2A_o$ proved to be totally polycation-dependent in dephosphorylating ³²P-protein kinase II in either the presence or absence of cAMP. Polybrene was a more potent activator than histone H1. The K_m value for protein kinase in the presence of $50 \,\mu\text{g/ml}$ polybrene and 2.5×10^{-5} M cAMP was $1 \,\mu\text{M}$ (not shown).

3.2. Effect of protein kinase II on the dephosphorylation of phosphorylase a

In preliminary experiments autophosphorylated protein kinase was found to inhibit phosphorylase phosphatase activity of phosphatase-1_c. This in-

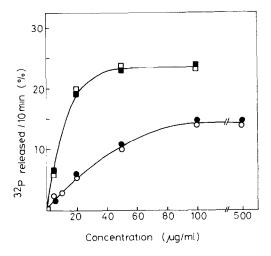


Fig. 2. Polycation dependency of phosphatase-2A₀ using ³²P-protein kinase as substrate. Reactions were run as described in section 2 in the presence of 0.08 µM ³²P-protein kinase and phosphatase-2A₀. Histone Hl (○, ●) or polybrene (□, ■) was added without (open symbols) or with 2.5 × 10⁻⁵ M cAMP (closed symbols). ³²P released in 10 min was expressed as % of total.

hibition became 5-fold greater after its dissociation by cAMP (not shown). The increased inhibition was attributed to the dissociated P-R^{II}, since neither cAMP nor the isolated C subunit of protein kinase had any inhibitory effect. To complete these experiments, the susceptibility of phosphatase-2A_c and -2A_o to the inhibition by P-R^{II} was also investigated. Thiophosphorylated protein kinase was used to avoid dephosphorylation of the P-R^{II} subunit (fig. 3).

As seen in fig.3, dissociated R^{II} in the dephospho form moderately inhibited phosphatase- 1_c , but thiophosphorylated R^{II} was a potent inhibitor of all phosphatases tested, with half-maximum inhibitory concentrations of 0.1-0.36 μ M. Polybrene was necessary to test phosphatase- $2A_o$ but it did not influence the results with phosphatase- 1_c or $-2A_c$ (not shown).

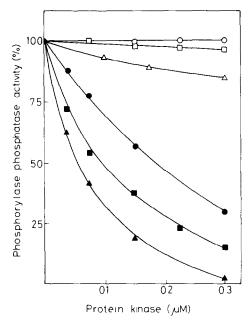


Fig.3. Effect of dissociated dephospho thiophosphorylated protein kinase II on phosphorylase phosphatase activity of various protein phosphatases. Dephosphorylation of 120 µg/ml phosphorylase a was carried out as described in section 2 with phosphatase-1c (Δ, \blacktriangle) ; phosphatase-2A_c (\square, \blacksquare); or phosphatase-2A_o (○,•) in the presence of dephospho protein kinase (open symbols), or thiophosphorylated protein kinase (closed symbols). Reaction mixtures contained 2.5×10^{-5} M cAMP and in experiments with protein kinase-2A_o also 50 μg/ml polybrene. Phosphatase activities without protein kinase were taken as 100%.

4. DISCUSSION

Previous observations, using various protein phosphatases [3-6], demonstrated the cAMP-dependency of the dephosphorylation of autophosphorylated protein kinase. This was proved for phosphatase- 1_c , whereas the phosphatase-2A catalyzed dephosphorylation was stimulated by polycations either in the presence or absence of cAMP, offering another regulatory device. The K_m value of phosphatase-2A for R^{II} is close to the concentrations of R^{II} in the heart [17], raising the possibility of its in vivo effectiveness.

The inhibition of phosphorylase phosphatase activity by R^I was described by Gergely and Bot in 1977 [16]. Recently Khatra et al. [18] have shown the inhibitory effect of R^{II} on a high- M_r form of phosphatase-1 which was increased thiophosphorylation of RII. According to our results thiophosphorylated RII inhibits not only phosphatase-1c but also type 2A phosphatases well within the intracellular concentration of protein kinase II. This finding further suggests that the phosphorylation state of RII can play a role in the regulation of type 1 and 2A phosphatases, switching out dephosphorylating processes simultaneously with the cAMP-induced phosphorylations, preventing futile cycles.

The present results show similarities between R^{II} and the heat-stable inhibitor-1 of phosphatase-1, including their increasing inhibitory potency upon phosphorylation and preferential dephosphorylation by phosphatase-2A (figs 1,3 and [7]). However, after being heated at 90°C (5 min) R^{II} or phosphorylated R^{II} lost the ability of inhibiting phosphatase-1_c (not shown). A detailed investigation of the mechanism of inhibition exerted by R^{II} on phosphatase-1 and -2A is in progress.

ACKNOWLEDGEMENTS

This work was supported by the Scientific Research Council, Ministry of Health, Hungary (17-2-14/069 and TPB Eü.M.-44). The authors are

indebted to Dr P. Gergely for valuable discussions and to Dr J. Csongor (Central Research Laboratory, University School of Medecine, Debrecen) for preparing $[\gamma^{-32}P]ATP$ and for radioactivity measurements. The skilful technical asssistance of Erzsébet Szabó and Valéria Bakó is acknowledged.

REFERENCES

- Rangel-Aldao, R. and Rosen, O.M. (1976) J. Biol. Chem. 251, 3375-3380.
- [2] Erlichman, J., Rangel-Aldao, R. and Rosen, O.M. (1983) Methods Enzymol. 99, 176-181.
- [3] Chou, C.-K., Alfano, J. and Rosen, O.M. (1977) J. Biol. Chem. 252, 2855-2859.
- [4] Li, H.-C., Hsiao, K.-J. and Chan, W.W.S. (1978) Eur. J. Biochem. 84, 215-225.
- [5] Uno, I. (1980) Biochim. Biophys. Acta 631, 59-65.
- [6] Blumenthal, D.K. and Krebs, E.G. (1983) Biophys. J. 41, 409a.
- [7] Ingebritsen, T.S., Stewart, A.A. and Cohen, P. (1983) Eur. J. Biochem. 132, 297-307.
- [8] Foulkes, J.G., Strada, S.J., Henderson, P.J.F. and Cohen, P. (1983) Eur. J. Biochemn. 132, 309-313.
- [9] Gergely, P., Erdődi, F. and Bot, G. (1984) FEBS Lett. 169, 45-48.
- [10] Erdődi, F., Csortos, C., Bot, G. and Gergely, P. (1985) Biochem. Biophys. Res. Commun. 128, 705-712.
- [11] Beutler, E. and Guinto, E. (1976) J. Lab. Clin. Med. 88, 520-524.
- [12] Kinzel, V. and Kübler, D. (1976) Biochem. Biophys. Res. Commun. 71, 257-264.
- [13] Rannels, S.R., Beasley, A. and Corbin, J.D. (1983) Methods Enzymol. 99, 55-63.
- [14] Weber, W. and Hilz, H. (1978) Eur. J. Biochem. 83, 215-222.
- [15] Dombrádi, V., Tóth, B., Bot, G., Hajdu, J. and Friedrich, P. (1982) Int. J. Biochem. 14, 277-284.
- [16] Gergely, P. and Bot, G. (1977) FEBS Lett. 82, 269-272.
- [17] Hofmann, F., Bechtel, P.J. and Krebs, E.G. (1977)J. Biol. Chem. 252, 1441-1447.
- [18] Khatra, B.S., Printz, R., Cobb, C.E. and Corbin, J.D. (1985) Biochem. Biophys. Res. Commun. 130, 567-573.